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OUTLINE 

 

Airborne time domain electromagnetic (ATEM) surveys have reached the stage where full waveform streamed data are recorded and 

delivered in addition to traditional survey products.  One result of this advance in technology is that the line between the acquisition and 

processing phases has become more flexible and many parameters that used to be hardwired in acquisition can now be adapted during the 

processing phase.  In order to make use of this opportunity the interpreter needs a clear description and understanding of the system specific 

corrections required to isolate geological responses as well as the effects of filters and other digital signal enhancement options that are 

available.   

 

Validating procedures on a synthetic data set is one way of ensuring that all geological responses falling within similar parameter ranges 

would be accurately presented after processing.  In this study the effects of three time-series and four spatial filters were analyzed. Streamed 

full waveform data were simulated by adding measured high altitude data to synthetic models.  The various filters were applied and the 

deviations from the true models compared with that of the unfiltered data.  The results were evaluated based on whether the filtered results 

showed more or less deviation than the unfiltered data from the original noise-free models.   
 

INTRODUCTION 

 

Converting streamed TDEM data into profiles requires a 

number of processing steps.   These steps vary from 

system to system depending on the waveform, geometry 

and contractor preferences. Processing steps can be 

viewed either as corrections or filters.  Corrections are 

procedures applied to remove any parts of the measured 

data that are systematic, predictable and not due to the 

earth’s conductivity response.  Filters are used to enhance 

the signal to noise ratio of the measured secondary field 

based to enhance signal to noise ratios and visual 

appearance of data.  There are overlaps of course, for 

example in the case where applying a correction requires 

the use of a filter. 

 

Typical corrections that are applied to recorded data to 

provide time gate profiles are: 

 Subtracting adjacent opposite cycle 50Hz/60Hz 

measurements to remove 50Hz/60Hz as well as DC 

or very low frequency signal (Macnae et al., 1984) 

 Removing system response 

 Normalizing for peak current variations 

 Gating of streamed data 

 

The application details of these corrections vary from 

system to system, based on the configuration central loop 

vs towed bird) and waveform (full duty cycle vs partial 

duty cycle).   Few end users of ATEM data would likely be 

in a position to know all different systems intimately enough 

to add this level of processing to their interpretation flows. 

 

Filters, on the other hand, can readily be applied by 

interpreters to highlight their specific targets of interest and 

are largely independent of the system.  With the advent of 

streamed data recording, the potential is there for 

interpreters to get access to data that is much less filtered 

than in the past, providing them with more flexibility to 

apply filtering routines of their own design.   

 

Most filters are effective in improving precision and making 

data more visually appealing, but the question is what the 

cost is in terms of accuracy.  This paper focuses on a variety 

of commonly used filters both in the time and spatial 

domains, and quantify what the effects are on the accuracy 

of the final results.  

FILTER DESCRIPTIONS 

 

The filters that were investigated in this study, are divided 

into time series and spatial categories and summarized as 

follows. 

 

Time series filters 

In cases where streamed data are not recorded these filters 

are applied electronically and in the analog domain during 

the acquisition phase.  Recorded full waveform data enables 

us to better evaluate and design these filters. 



 

 Despiking 

The despiking filter was developed very specifically for 

streamed TDEM data processing based on the observed 

characteristics of spheric noise (Fig. 1).  Spheric events 

tend to occur over 200 to 500 samples (6.4 s sampling 

interval), and although there is often a single peak that can 

be identified, the data are corrupted for up to 500 samples 

surrounding the peak.   Even if 500 samples are corrupted, 

that is less than a quarter of the recorded decay.  The 

despiking filter is designed to identify these spikes and 

only interpolate the affected part of the data stream from 

adjacent stations. Filter sensitivity is based on average 

noise levels determined from high altitude measurements. 

 

 
Figure 1: Example of two events of spheric noise.  The 

top panel shows the transmitter current as reference and 

the bottom panel shows the recorded streamed data over 

3125 fiducials or 20ms.  The first spheric event is 

recorded just before the transmitter current is switched on 

and the second shortly after the turn-off.  

 

 Low Pass Finite Impulse Response (FIR) 

FIR filters are applied by convolving a finite number of 

coefficients with a time series. The number of coefficients 

(filter order plus one) and coefficient values are the 

variable parameters.  A series of low pass filters between 

5 kHz and 15 kHz were designed using the Parks-

McCellan algorithm and applied in Oasis Montaj using a 

custom executable file (gx). 

 

 Variable Width Averaging (VWA) 

The VWA filter was inspired by the concept of variable 

width gates used in most, if not all, time domain EM 

systems.  Time gates (or channels) are chosen to be small 

in early times where the signal to noise ratio is high and 

the decay changes rapidly with time.  They are then 

progressively widened with time until many streamed 

data samples are averaged to produce a single channel 

where the signal to noise ratios are lower and the decay 

slope much less than at early times.  The VWA filter uses 

the same principle and averages values along the times 

series using single data samples at positions where the 

decay rapidly changes and larger averaging widths where 

the decay flattens out.  The main difference between this 

filter and the normal gating procedure is that there is no 

reduction in the number of data points between input and 

output, whereas gating would typically reduce 2000 points 

to 50 or less.  The VWA filter is also applied in Oasis Montaj 

using a custom executable file (gx). 

 

Spatial filters 

 

 FFT low pass  

The FFT low pass filter was applied using Oasis Montaj 

software.  The filter is based on the method described by 

Fraser et al. (1966) and the only variable parameter is the 

filter cut-off wavelength. 

 

 Stacking (averaging) 

The stacking or averaging filter calculates the average of a 

specified number of samples with equal weight assigned to 

each sample. The only variable parameter is the number of 

samples.  

 

 Non-linear  

The non-linear filter was also applied using Oasis Montaj 

software.  This filter was first described by Naudy and 

Dreyer (1968) and has two variable parameters; the filter 

width as well as filter tolerance or noise amplitude. 

 

 Polynomial fitting (Savitzky-Golay) 

The Savitzky-Golay filter is based on fitting successive sub-

sets of adjacent data points with a polynomial by the method 

of linear least squares (Savitzky and Golay, 1964). A stand-

alone algorithm was used to implement this filter with 

variable parameters being the filter width and the order of 

polynomial to use.  

  

METHODOLOGY 

 

Synthetic data were calculated using 200m x 200m and 

400mx400m plates with conductances scaled so that the 

decay constants ()  was 1ms and 5 ms for each of the two 

plates.  Two sections of data measured at high altitude 

during an XciteTM test survey in Ermelo, South Africa were 

used as typical examples of AEM noise.  One section, 

referred to as the “low noise” section was acquired during 

optimal survey conditions while the “high noise” section 

was acquired during less than ideal conditions with a 

thunder storm approaching (Fig. 2).  

 

Maxwell modelling software that was used to calculate the 

theoretical plate responses does not allow the calculation of 

more than 3000 gates which is typical for streamed data 

systems.  In order to generate typical model responses 

Maxwell was used to calculate the standard off-time 

responses for a variety of different plate sizes and depths.   



Figure 2: Profiles of “low noise” (bottom) and “high 

noise” (top) sections after standard processing. 

 

The conductivities were chosen to give predetermined 

decay constant values of 1ms and 5ms which are typical 

values that can be detected with 25Hz off-time helicopter 

TDEM systems (reference relationship between tau and 

geometry).  Streamed data responses for these decay 

constants were calculated by convolving a measured 

system waveform (Combrinck and Wright, 2016) over ten 

full waveform cycles with exponential functions of the 

form: 

 

𝐹𝜏𝑖
(𝑡) = 𝑒−𝑡/𝜏𝑖     ; 𝑖 = 1,5                         (1) 

 

These responses are late time approximations and not 

accurate for early times, but are sufficient for the purpose 

of investigating filter effects in the mid- to late time range 

( >170 ms) after turn-off.  The full waveform responses 

for each decay constant were then scaled to match the 

plate modelling software at the overlapping time gates to 

account for plate and system geometry and create 

streamed data profiles of synthetic data. 

 

Noise sections were added to the model data to give 

representative streamed data sets and the minimum 

corrections mentioned in the previous section were 

applied to each of these. The noise sections were also 

processed on their own as separate lines. 

 

In the next phase the different filters (with a range of 

parameters) were applied to the modelled data with noise 

added, as well as to the noise sections alone. 

 

Standard deviations over 300 points of the noise were 

used as estimates of precision for each instance of a filter.  

Similarly, standard deviations of the filtered data from the 

model data (before any noise were added) over 300 points 

were used as estimates for accuracy (Eq. 2). 
 

 

𝑆𝑡𝑑𝐷𝑒𝑣(𝐹(𝑥)) = √
1

𝑛
∑(𝑥𝑖 − 𝜇𝑖)2   

𝑛

𝑖=1

                  (2) 

 

where, 
𝑛 = 300, 
𝜇𝑖 = 𝑚𝑜𝑑𝑒𝑙 𝑣𝑎𝑙𝑢𝑒 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑛𝑜𝑖𝑠𝑒 𝑎𝑑𝑑𝑒𝑑 

𝑥𝑖 = 𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 𝑑𝑎𝑡𝑎  

 

 

RESULTS 

The synthetic data combinations were split into 10 lines 

labelled as follows: 

 

HN: High noise section, no plate 

HN_200_1: 200x200m plate;  = 1ms; high noise added 

HN_200_5: 200x200m plate;  = 5ms; high noise added 

HN_400_1: 400x400m plate;  = 1ms; high noise added 

HN_400_5: 400x400m plate;  = 5ms; high noise added 

LN: Low noise section, no plate 

LN_200_1: 200x200m plate;  = 1ms; low noise added 

LN_200_5: 200x200m plate;  = 5ms; low noise added 

LN_400_1: 400x400m plate;  = 1ms; low noise added 

LN_400_5: 400x400m plate;  = 5ms; low noise added 

 

Each of these lines have been processed with the minimum 

corrections required to extract 32 gated profiles. The profile 

data for these 10 lines are shown in Figure 3.  Subsequent 

comparisons always used these 10 lines as reference 

Standard deviations were calculated over all stations on all 

lines, but two locations highlighted on each line were used 

to draw comparisons between the various filters. 

 

Combining all the filter variations resulted in 57 sets of 

filtered data.  Only a few selected examples will be 

discussed to illustrate the effects of each filter and the 

standard deviations of each results from the original models 

will be used as a more comprehensive comparison tool to 

include all the data. 

 

 

Time series filters 

 

 Despiking 

 

A profile example of the despiking filter applied to the low 

noise case is shown in figure 4. The larger amplitude spikes 

have been successfully removed and the effect of this filter 

is limited to the spheric affected decays only, unlike a 

typical frequency domain filter which affects all the data.  In 

figure 5 we have the same filter applied to a high noise line.  

The only difference is that the filter sensitivity was adjusted 

to match the higher standard deviation of the noise.  The 

despiked profiles are smoother, especially over the plate 

anomaly.   The general nature of the profiles is still very 

noisy and on closer inspection a few samples can be found 

where spikes were introduced and worsened the data.  This 



filter performed better in the low noise case as it is based 

on finding single station sharp variations (spherics) in a 

more homogeneous background.  The high noise case 

does not conform to this basic assumption as the spheric 

activity dominates the data.  As mentioned, this noise 

sample was collected as a thunder storm was approaching 

and even though the despiking filter is designed to deal 

with spheric activity it will underperform if the spheric 

interference is continuous or have events that are too close 

in time to be treated as individual spikes. 

 

The profile presentation used in figures 4 and 5 are useful 

to indicate smoothness of data and provide a qualitative 

sense of noise reduction.  The next step is to quantify the 

filter results in terms of the standard deviation of the 

filtered data from the noise-free model data. The standard 

deviation is calculated for each channel over 300 points 

or 150m.  This standard deviation (error) for each filtered 

channel is then expressed as a fraction of the error of the 

unfiltered data.  In this format values smaller than one 

indicate that the filter has improved the data and values 

larger than one indicate that the error has increased.  So, 

even though profiles might appear smoother, the filtered 

data could be less accurate when compared with the 

original models.  Figure 6 shows the error fractions of the 

two lines from figures 4 and 5, calculated at the stations 

indicated with the black dots.  The profiles marked with 

“b” at the end always correspond to the second station on 

the line counting from the left.  Although these stations 

are indicated as single dots, the errors are calculated for 

the 300 points surrounding each one, and the profiles are 

therefore representative of more than a single decay. 

 
Figure 6:  The error fractions for lines HN_200_1 and 

LN_200_1 at two stations on each line. 

 

The low noise line show very little variation from one 

except on the first and last three channels of LN_200_1_b. 

The reduction in error of the last three channels 

corresponds to a late time spike that was successfully 

filtered out.  The spike is visible on Figure 4 just to the 

right of the second marked station (black dot).  The 

increase in error in the early channels is not immediately 

evident and the reason is addressed in a subsequent 

paragraph.   

 

The high noise line show improvements on most channels, 

but not all. Channels 15 and 23 were made worse in both 

example stations.   The presentation in figure 6 is useful, but 

limited with the number of models that can be compared.   In 

order to illustrate the effect of the despiking filter on all the 

models (2 stations on 10 lines) the average of the error 

fraction over the 32 channels are calculated and displayed as 

a function of the line and center station (Figure 7).   

 
Figure 7:  The average error fractions of the despiking filter 

for all model lines and stations. 

 

Apart from LN_200_5b and HN 400_5b it is clear that the 

low noise lines are generally slightly improved, and that the 

high noise lines are improved on average, even if not for 

every channel individually.   Closer inspection of 

LN_200_5b and HN 400_5b revealed that the anomaly peak 

curvatures were so sharp that they were treated as spikes as 

well.  This also happened on some of the other lines and was 

the reason for the first three channels in Figure 6 to have 

error fractions more than one.  However, on LN_200_5b and 

HN 400_5b the majority of channels were picked as spikes 

resulting in an average error fraction larger than one. 

 

 FIR 

 

Fifteen instances of the FIR filter were tested in total Filters 

were designed to have cut-off frequencies of 5, 10 and 15 

kHz.  In a first run, each of these frequencies were 

implemented with 6, 11 and 16 coefficients corresponding 

to 5th, 10th and 15th order filters.  The results from this first 

attempt indicated that the filters using an even number of 

points (5th and 15th order) introduced much larger errors 

than the 10th order filter for the same cut-off frequencies.  

One of the more extreme examples is shown in Figure 8a. 

The effect was more pronounced on the low noise data lines 

over the anomalies where the signal was strongest.  It 



reflects the error introduced by the asymmetry of even 

point filters, especially where steep slopes on decays are 

encountered.   

 

 
Figure 8a: Fraction errors of 5th, 10th and 15th order FIR 

filters compared to unfiltered data at station LN_400_5b. 

In the legend the first number refers to the filter order and 

the second to the cut-off frequency in kHz. 

 
Figure 8b: Fraction errors of 6th, 10th and 14th order FIR 

filters compared to unfiltered data at station LN_400_5b.  

 

A second run of filters were then applied using only 

uneven numbers for filter coefficients (Figure 8b).  The 

filter order seems to have a larger effect than the cut-off 

frequency on reducing the error. 

 

The results for the 5 kHz low pass instance of the 6th, 10th 

and 14th order filters are shown in Fig. 9.  The 14th order 

filter has the biggest effect in reducing the error and is 

more effective on the high noise data.  Except for the 

LN_200_1b line, there is always an improvement.  In 

Fig. 10 a profile comparison of line HN_400_1 is shown 

with selected channels before and after the filter is 

applied.  Compared to the despiking filter there is far less 

improvement in the profile smoothness, especially of the 

later channels.  This is likely due to the fact that the later 

channels are already averaged extensively through the 

gating process and the relative small width FIR filter 

does not cause a significant improvement on these late 

channels.   

 

 
Figure 9:  The average error fractions of 5kHz instance of 

the 6th, 10th and 14th order FIR filters for all model lines and 

stations. 

 

 Varying width averaging (VWA) filter 

 

The results from the VWA filter are presented in Fig. 11 

together with the despiking filter results from Fig. 7 for 

comparison and a profile example of HN_400_1 is shown 

in Fig. 12.  Comparing the profiles to the same data shown 

for the FIR filter in Fig.10, it is clear that the late time noise 

reduction is much better, while the early channel changes 

are a bit less.  Overall though, the VWA filter gives the 

largest error reduction over all channels and models of the 

three filters discussed so far.  

 
Figure 11:  Average error fractions of the VWA and 

despiking filters for all model lines and stations. 

 

 

 

 



Spatial filters 

 

The four spatial filters all have a filter width variable.  The 

widths for each one were changed from 21 to 201 fiducials 

in intervals of twenty.  Although the exact effects of the 

filter widths are different for the different filters, it is used 

as a practical means to draw comparisons between the 

four.   Figures 13-16 summarize the effects of the spatial 

filters on the different data sets.  

 
Figure 13:  Average error fractions as a function of low 

pass filter width. 

 
Figure 14:  Average error fractions as a function of 

stacking filter width. 

The=5ms conductors show the largest errors on all 

filters while the high noise lines with =1ms conductors 

benefit the most from filtering. 

 

 
Figure 15:  Average error fractions as a function of non-

linear filter width. 

 
Figure 16:  Average error fractions as a function of 

Savitzky-Golay filter width. 

 

In most cases an initial reduction in error is observed for 

short filter widths and then followed by a steady increase in 

error with increasing filter width.  The filter width where 

this change occurs and also the rate at which the errors 

increase is dependent on the filter type.  In figures 17 and 18 

some results are regrouped to better visualize the effects of 

the different filters. 

 

In figure 17 all the low noise (LN) lines are grouped 

together.  All these models show an increase in error with 



filtering but the Savitzky-Golay filter causes the smallest 

error increase, closely followed by the low pass filter. 

 
Figure 17:  Average error fractions for the low noise 

models. 
 

In figure 18 the high noise (HN) results are shown.  With 

this group we see an initial error reduction for all filters.  

The low pass and Savitzky-Golay filters can be applied 

with filter widths up to 80 and 60 fids respectively before 

the errors start increasing.   

 
 

Figure 18:  Average error fractions for the high noise 

models. 

 

Profile comparisons of these filters are shown in figures 

19 and 20 for filter widths of 101 fids.  The two lines that 

are shown are the ones that benefited the most 

(HN_400_1) and the least (LN_400_5) from the spatial 

filters.  It is interesting to note that while the non-linear 

filter gave the best results on HN_400_1 it also gave the 

worst results by far on LN_400_5. 

CONCLUSIONS 

Recording of streamed data in modern ATEM systems 

allow corrections and filters that were traditionally 

applied during acquisition to now be implemented in the 

processing phase.  As advanced filtering now becomes an 

optional post-acquisition procedure it is crucial for 

processors and interpreters to understand the effects of these 

filters on data.  

 

A simple yet effective method was used to calculate errors 

and evaluate the effects of various filters on streamed data 

sets.  Even though the number of filters and models included 

in this study are by no means representative of all options 

and environments it is clear that significant errors can be 

introduced if the only aim (and measure of success) is to 

provide smooth and visually appealing data.  Most filters 

will change the input data in some way.  Comparing the 

results from the spatial filters on high and low noise data 

(Figures 17 and 18) illustrates that high noise data can 

benefit from filtering but that low noise data do not.  Of the 

filters examined here the VWA and the Savitsky-Golay 

filters showed the most promising results applied to the time 

series and spatial data respectively.  The VWA filter is 

effective because it filters the high noise (late time) data 

more than the low noise data (early time).  Developing filters 

that apply a similar principle in the space domain, based on 

data amplitudes and lateral spatial gradients could be 

investigated in future. 
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Figure 3a: Profiles of high noise lines. Panel 1: HN - High noise section, no plate. Panel 2: HN_400_5 - 400x400m plate;  = 

5ms; high noise added. Panel 3: HN_400_1 - 400x400m plate;  = 1ms; high noise added. Panel 4: HN_200_5 - 200x200m 

plate;  = 5ms; high noise added.  Panel 5: HN_200_1 - 200x200m plate;  = 1ms; high noise added.  The black dots indicate 

the stations referenced for decay analysis and standard deviation comparisons. 
 

 

 
 



 
 

 

 
 

Figure 3b: Profiles of low noise lines. Panel 1: LN - Low noise section, no plate. Panel 2:  LN_400_5 - 400x400m plate;  = 

5ms; low noise added. Panel 3: LN_400_1 - 400x400m plate;  = 1ms; low noise added. Panel 4: LN_200_5 - 200x200m plate; 

 = 5ms; low noise added.  Panel 5: LN_200_1 - 200x200m plate;  = 1ms; low noise added.  The black dots indicate the 

stations referenced for decay analysis and standard deviation comparisons. 
 

 



 

Figure 4: Low noise example of the despiking filter. A section of the line (LN_200_1) with the 200x200m plate ( = 1ms) and 

low noise added is shown in the top panel.  The middle panel illustrates the same channels after the despiking filter has been 

applied. The bottom panel compare the last channel only of the unfiltered data (black) and the despiked data (red). 
 

 

 

Figure 5: High noise example of the despiking filter. A section of the line (HN_200_1) with the 200x200m plate ( = 1ms) and 

high noise added is shown in the top panel.  The middle panel illustrates the same channels after the despiking filter has been 

applied. The bottom panel compares the last channel only of the unfiltered data (black) and the despiked data (red). 
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Figure 10: High noise example of the 5kHz low pass, 14th order FIR filter. A section of the line (HN_400_1) with the 400x400m 

plate ( = 1ms) and high noise added is shown in the top panel.  The second panel illustrates the same channels after the FIR 

filter has been applied. The third panel compares the last channel only of the unfiltered data (black) and the filtered data (red).  

The bottom panel shows the third channel of the unfiltered data (black) and the filtered data (red).   
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Figure 12: High noise example of the VWA filter. A section of the line (HN_400_1) with the 400x400m plate ( = 1ms) and 

high noise added is shown in the top panel.  The second panel illustrates the same channels after the VWA filter has been 

applied. The third panel compares the last channel only of the unfiltered data (black) and the filtered data (red).  The bottom 

panel shows the third channel of the unfiltered data (black) and the filtered data (red).   
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Figure  19: The effects of the four spatial filters with filter width 101 fiducials (= 50m) on line HN_400_1are shown.  Top 

Panel:  Unfiltered data.  Second Panel:  Low pass filter.  Third Panel:  Stacking (averaging) filter. Fourth Panel: Non-linear 

filter. Fifth Panel: Savitsky-Golay filter.   
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Figure  20: The effects of the four spatial filters with filter width 101 fiducials (= 50m) on line LN_400_5 are shown.  Top 

Panel:  Unfiltered data.  Second Panel:  Low pass filter.  Third Panel:  Stacking (averaging) filter. Fourth Panel: Non-linear 

filter. Fifth Panel: Savitsky-Golay filter.   
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